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Proofs of results on permutations mentioned in the notes.

Recall example from notes:

Example Let A = {1, 2, 3, 4, 5, 6} and

π =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
.

It is easy to check that π6 = 1A. Choose 1 ∈ A and repeatedly apply π to 1
six times to get

1→ 5→ 4→ 1→ 5→ 4→ 1.

If written as (1, 5, 4, 1, 5, 4), this is not a cycle since the elements are not
distinct. As a permutation it can be written as

(1, 5, 4, 1, 5, 4) = (1, 5, 4) ,

a cycle of length 3. �

It cannot be assumed that starting with an element and repeatedly ap-
plying a permutation will give a cycle (and, in particular, return to the initial
element). It has to be proved that

Theorem 1 Given a permutation ρ on a finite set A and a ∈ A then ρ
applied repeatedly to a will give a cycle.

Proof Consider the set {
ρi (a) : j ≥ 0

}
⊆ A.

Since A is finite the set {ρi (a) : j ≥ 0} is finite so we have reputation.
Thus ∃k > ` ≥ 0 for which ρk (a) = ρ` (a). Out of all such pairs of (k, `)
choose `0 to be the minimum and then k0 to be the minimum of all such k
for this `0. This means in particular that ρk0 (a) = ρ`0 (a) yet ρj (a) 6= ρ`0 (a)
for all k0 > j > `0.

We claim that `0 = 0. For a contradiction assume that `0 ≥ 1. Apply ρ−1

to both sides of ρk0 (a) = ρ`0 (a) to get ρk0−1 (a) = ρ`0−1 (a), contradicting the
choice of `0 as the smallest of all ` for which we can have such an equality.
Hence `0 = 0.

Let aj = ρj (a), so a0 = a. Then ρk0 (a) = ρ`0 (a) with ρj (a) 6= ρ`0 (a)
for all k0 > j > `0, along with `0 = 0, becomes ak0 = a and aj 6= a for all
k0 > j > 0. Thus we have a cycle (a, a1, a2, ..., ak0−1). �
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Theorem 2 A permutation on a finite set A is either a cycle or can be
expressed as a product (composition) of disjoint cycles.

Proof is by (strong) induction on the number, r, of points moved by a
permutation.

Base case. If r = 0 then ρ is the identity which is a 1-cycle.

Inductive step. Assume result true for all r ≤ k.

Let ρ be a permutation that moves k + 1 points. Let Mρ be the set of
elements moved by ρ, so |Mρ| = k+ 1 Let a ∈Mρ, so a point moved by ρ.

By the previous result we have a cycle (a0, a1, a2, ..., an−1) where a0 = a,
aj = ρj (a) and ρ (an−1) = a0. We label this cycle as σ.

Let Mσ be the set of elements moved by σ, so |Mσ| = n.

Note that if σ moves an element a then, by definition, it sends it to the
same place as ρ sends it, which can be written as

a ∈Mσ ⇒ (σ (a) = ρ (a)) . (1)

This is also means that σ moves only some of the elements moved by ρ, i.e.

Mσ ⊆Mρ.

In turn this means
n = |Mσ| ≤ |Mρ| = k + 1

Thus 2 ≤ n ≤ k + 1.

Consider the permutation σ−1 ◦ ρ and two cases.

• Assume a /∈ Mρ in which case a /∈ Mσ since Mσ ⊆ Mρ. Thus a is
fixed by both ρ and σ and hence σ−1. Therefore(

σ−1 ◦ ρ
)

(a) = σ−1 (ρ (a))

= σ−1 (a) since a is fixed by ρ

= a since a is fixed by σ−1.

Hence if a /∈Mρ then a is fixed by σ−1 ◦ ρ.
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• Assume a ∈Mσ. Then by (1) above, σ (a) = ρ (a) .Therefore(
σ−1 ◦ ρ

)
(a) = σ−1 (ρ (a))

= σ−1 (σ (a)) since σ (a) = ρ (a)

= a.

Hence if a ∈Mσ then a is fixed by σ−1 ◦ ρ.

The two bullet points imply that the only elements moved by σ−1 ◦ ρ
satisfy a ∈ Mρ and a /∈ Mσ, i.e. a ∈ Mρ \Mσ. Thus the number of points
moved by σ−1 ◦ ρ is

≤ |Mρ \Mσ|
= |Mρ| − |Mσ| since Mσ ⊆Mρ

= (k + 1)− n
≤ (k + 1)− 2 since n ≥ 2,

= k − 1.

Because this number is ≤ k we can apply the inductive hypothesis to
express σ−1 ◦ ρ as a product of disjoint cycles, i.e.

σ−1 ◦ ρ = σ1 ◦ · · · ◦ σt.

The elements moved by σ1 ◦ · · · ◦ σt are fixed by σ and so σ1 ◦ · · · ◦ σt and σ
are disjoint, and thus σ1, · · · , σt and σ are all disjoint. Finally

ρ = σ ◦ σ1 ◦ · · · ◦ σt,

so the result holds for permutations that move k + 1 elements. Hence by
induction it holds for all permutations. �

Example continued Let A = {1, 2, 3, 4, 5, 6} and π as above. We have
found the cycle (1, 5, 4) . Next 2 /∈ (1, 5, 4) so we find the cycle starting with
2, namely (2, 6). Finally, 3 is in neither of these cycles, and the permutation
starting with 3 is simply (3). The method now ends, as it always must when
A is a finite set. Therefore

π = (1, 5, 4) ◦ (2, 6) ◦ (3) = (1, 5, 4) ◦ (2, 6) .
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Question What happens if we start with a different number, say 2 in place
of 1 in the above example? We would get π = (2, 6) ◦ (1, 5, 4). But we know
that composition of permutations is not commutative in general so can we
have

(2, 6) ◦ (1, 5, 4) = π = (1, 5, 4) ◦ (2, 6)?

Answer Yes!

Theorem 3 Disjoint permutations on a set commute.

Proof Let ρ and π be disjoint permutations on A. Let a ∈ A.

There are three cases,

i) a is moved only by ρ,

ii) a is moved only by π and

iii) a is not moved by either.

(Since ρ and π are disjoint there is no fourth case.)

Case (i) Assume a is fixed by π. Let b = ρ (a) , so b 6= a since ρ
moves a. Note that if ρ were to fix b then ρ (b) = b = ρ (a) But ρ is
injective, so b = a, contradicting b 6= a. Hence ρ moves b. But ρ and π
are disjoint so π fixes b. We can now justify every step in

ρ ◦ π (a) = ρ (π (a)) by definition of ◦ ,

= ρ (a) , since π fixes a,

= b, by definition of b,

= π (b) , since π fixes b,

= π (ρ (a)) by definition of b,

= π ◦ ρ (a) . by definition of ◦ .

Case (ii) Assume a is fixed by ρ. Just interchange ρ↔ π in the proof
of case (i) to get a proof in this case.

Case (iii) a is not moved by neither σ or ρ.

ρ ◦ π (a) = ρ (π (a)) = ρ (a) , since π fixes a,

= a since ρ fixes a,

= π (a)

= π (ρ (a)) = π ◦ ρ (a) .
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In all cases we get ρ◦π (a) = π ◦ρ (a), an equality on elements in A. True
for all a ∈ A means ρ ◦ π = π ◦ ρ, an equality of functions, and hence π and
ρ commute. �

We can go further and prove that the decomposition into disjoint cycles
is unique. A proof of this is by induction and within it you need to be able
to “cancel” permutations.

Lemma 4 Cancellation Law Assume that α, β and γ are permutations
on a set A. If γ ◦ α = γ ◦ β then α = β. If α ◦ γ = β ◦ γ then α = β.

Proof Assume γ ◦ α = γ ◦ β. Then

α = 1A ◦ α =
(
γ−1 ◦ γ

)
◦ α

= γ−1 ◦ (γ ◦ α) composition is associative

= γ−1 ◦ (γ ◦ β) by assumption

=
(
γ−1 ◦ γ

)
◦ β

= 1A ◦ β = β.

Leave the other case to students. �

A further result is needed in the proof of uniqueness.

Lemma 5 If β and γ are cycles on A that both move an element a ∈ A, and
βr (a) = γr (a) for all r ≥ 1 then β = γ.

(This result allows us to go from knowing what β and γ do to one element
to knowing that they act identically on all elements, that is, they are the same
permutation.)

Proof Let a ∈ A be an element moved by both β and γ. A cycle can start
at any point so we can start β at a and write

β = (a, a1, a2,..., am) where ai = βi (a) for all i ≤ m and β (am) = a. (2)

Similarly, we can start γ at a with

γ = (a, b1, b2, ..., bn) where bj = γj (a) for all j ≤ n and γ (bn) = a. (3)

Without loss of generality assume m ≤ n, (if not the case, relabel β as γ
and γ as β.) Then from (2) , for all i ≤ m we have

ai = βi (a) = γi (a) by assumption in Theorem (with r = i),

= bi, by (3) ,
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Thus we could write γ as (a, a1, a2, ..., am, bm+1, ..., bn). But then

bm+1 = γm+1 (a) by (3) ,

= βm+1 (a) by assumption in Theorem (r = m+ 1),

= β (βm (a)) = β (am) = a, by (2) .

So the cycle in γ goes back to a. Thus n, the cycle length of γ, equals m.
Hence γ and β contain the same elements and are the same length therefore
γ = β. �

Theorem 6 A permutation on a finite set A can be expressed as a product
of disjoint cycles uniquely apart from the order of the cycles.

Proof Let
π = α1 ◦ α2 ◦ .... ◦ αs = β1 ◦ β2 ◦ ... ◦ βt

be two factorizations into disjoint cycles. Proof is by induction on n =
max (s, t) .

1. Base case If n = 1 then π = α1 = β1 and the two factorizations are
identical.

2. Inductive Step Assume result true for n = k. So if α1 ◦α2 ◦ ....◦αs =
β1 ◦ β2 ◦ ... ◦ βt (disjoint cycles on each side) with max (s, t) = k then
the βi can be renumbered so αi = βi for all i, and in particular, s = t.

Assume we have a permutation π that has two factorizations as above
with max (s, t) = k + 1.

Let a ∈ A be an element moved by βt. By disjointedness a is unmoved
by all βi, 1 ≤ i ≤ t− 1. Thus for r ≥ 1 we have

πr (a) = (β1 ◦ β2 ◦ ... ◦ βt)
r (a)

= (β1 ◦ β2 ◦ ... ◦ βt) ◦ (β1 ◦ β2 ◦ ... ◦ βt) ◦ · · · ◦ (β1 ◦ β2 ◦ ... ◦ βt) (a)

= βrt ◦ βrt−1 ◦ ... ◦ βr2 ◦ βr1 (a) , disjoint permutations commute,

= βrt ◦ βrt−1 ◦ ... ◦ βr2 (a) , since a is fixed by β1, and continue,

...

= βrt (a) , since a is fixed by βt−1.
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Thus πr (a) = βrt (a) for all r ≥ 1 (We cannot yet use the Lemma above
since π need not be a cycle.)

Since a is moved by π it must be moved by some αj, 1 ≤ j ≤ s and
unmoved by all the other αi, i 6= j. By relabelling, we can assume that
a is moved by αs alone. By the same argument as for β we find that
πr (a) = αrs (a) for all r ≥ 1.

Combine to get αrs (a) = βrt (a) for all r ≥ 1. Since both αs and βt are
cycles we can now apply the Lemma above and deduce αs = βt. By
the cancellation law we get

α1 ◦ α2 ◦ .... ◦ αs−1 = β1 ◦ β2 ◦ ... ◦ βt−1.

Now max (s− 1, t− 1) = max (s, t) − 1 = k and we can use the in-
ductive hypothesis to conclude that s = t and, on relabelling the βi,
α1 = β1, ..., αt−1 = βt−1.

Hence the result is true if max (s, t) = k+1. Thus by induction the result
holds for all permutations. �

Theorem 7 The order of a cycle is equal to its length.

Proof Let σ be a cycle on A. Let d be the order of σ, so σd = 1A and let `
be the length of σ.

We will show that d = ` by showing that d ≥ ` and d ≤ `.

Let a0 ∈ A be chosen as an element moved by σ. Recall that we can write
the cycle starting with any element moved by it. Hence

σ =
(
a0, σ (a0) , σ

2 (a0) , ..., σ
`−1 (a0)

)
.

From this we see that

σ (a0) 6= a0,

σ (a0) 6= a0,

...

σ`−1 (a0) 6= a0,

σ` (a0) = a0.
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Proof that d ≥ `. From the definition of d as σd = 1A we have
σd (a0) = a0 for the element chosen above. Yet, from the above list we
see that

σd (a0) = a0 6= σj (a0)

for any 0 ≤ j ≤ ` − 1. In other words, d 6= j for any 0 ≤ j ≤ ` − 1.
Hence d ≥ `.

Proof that d ≤ `. Let b ∈ A be given. There are two cases.

Case (i) If b is moved by σ, then b occurs in the cycle seen above,(
a0, σ (a0) , σ

2 (a0) , ..., σ
`−1 (a0)

)
,

i.e. b = σj (a0) for some 0 ≤ j ≤ `− 1. Consider

σ` (b) = σ`
(
σj (a0)

)
= σ`+j (a0) = σj+` (a0)

= σj
(
σ` (a0)

)
= σj (a0) , see last line in above list,

= b since b = σj (a0) .

Thus σ` (b) = b.

Case (ii) The second case is b fixed by σ. But then trivially b is
fixed by σ`, i.e. σ` (b) = b.

In both cases i) and ii) we get σ` (b) = b.

True for all b ∈ A means that σ` = 1A.

But d is the order of σ so, by Lemma, d|`. In particular, d ≤ `.

Combine d ≥ ` and d ≤ ` from (a) and (b) to deduce d = `. �

Theorem 8 Suppose that π = π1 ◦ π2 is a decomposition into a product of
two disjoint permutations then the order of π is the least common multiple
of the orders of π1 and π2.

Proof Let d be the order of π. Let d1 be the order of π1 and d2 the order of
π2. Set f = lcm (d1, d2).

We will show d = f by showing that d ≤ f and d ≥ f .
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Proof that d ≤ f .

From the definition of f = lcm (d1, d2) we have d1|f and d2|f which
in turn mean there exist integers a1 and a2 such that f = a1d1 and
f = a2d2. Then

πf = (π1 ◦ π2)
f

= (π1 ◦ π2) ◦ (π1 ◦ π2) ◦ ... ◦ (π1 ◦ π2)

= πf1 ◦ π
f
2 reordering allowed since π1 and π2 disjoint,

= πa1d11 ◦ πa2d22

=
(
πd11

)a1 ◦ (πd22 )a2
= (1A)a1 ◦ (1A)a2 ,

= 1A.

That is πf = 1A. But the order of π is d so, by the Lemma, d|f . In
particular, d ≤ f .

Proof that d ≥ f .

Let a ∈ A be given. There are two cases.

(i) Suppose a is moved by π1. But then a is fixed by π2 since the
two cycles are disjoint. Recalling that d is the order of π we start
from

a = πd (a) = (π1 ◦ π2)
d (a)

=
(
πd1 ◦ πd2

)
(a) , reordering allowed since π1 and π2 are disjoint,

= πd1
(
πd2 (a)

)
, by definition of composition,

= πd1 (a) since a is fixed by π2 and thus by πd2.

Thus πd1 (a) = a.

(ii) In the second case a is fixed by π1. Trivially it is then fixed
by πd1, i.e. πd1 (a) = a.

So in both cases i) and ii) we have πd1 (a) = a. True for all a ∈ A
means that πd1 = 1A. But d1 is the order of π1 and so, by the
Lemma, d1|d.
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Repeat the argument, replacing π1 by π2 and vice-versa to get
πd2 = 1A and thus d2|d. (Student must do this.)

Thus d1|d and d2|d, in which case, d is a common multiple of d1 and
d2. Yet f is the least of all such common multiples, hence f ≤ d.

Combine d ≤ f and f ≤ d from (a) and (b) to get d = f . �

Theorem 9 Suppose that

π = π1 ◦ π2 ◦ .... ◦ πm

is a decomposition into a product of disjoint permutations, then the order of π
is the least common multiple of the orders of the permutations π1, π2, ...., πm.

Proof by induction on m.

If m = 2 then the result holds by a previous Theorem.

Assume result holds for m = k. Let π have a decomposition into k + 1
disjoint permutations, π1 ◦ π2 ◦ .... ◦ πk+1, and let oi =order(πi).

By the induction hypothesis the order of π1◦π2◦....◦πk equals lcm (o1, o2, ..., ok).
The earlier Theorem on the order of the composition of two disjoint permu-
tations means that the order of (π1 ◦ π2 ◦ .... ◦ πk) ◦ πk+1 equals

lcm (lcm (o1, o2, ..., ok) , ok+1) = lcm (o1, o2, ..., ok, ok+1)

as required. �

(I leave it to the student to check that for a, b, c ∈ Z, lcm (lcm (a, b) , c) =
lcm (a, b, c) .)

Appendix to the Appendix

We have seen that we can build all permutations out of cycles. But there are
other possible building blocks.

Definition 10 A transposition is a cycle of length 2.
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Example (2, 3) ∈ S5 is a transposition.

Example In S5 we have (2, 3, 4) = (3, 4) ◦ (2, 4), i.e. we have written a per-
mutation as a product of transpositions. This decomposition is not unique,
for example (2, 3, 4) = (3, 4, 2) = (4, 2) ◦ (3, 2) and the sets of transpositions
{(4, 2) , (3, 2)}, {(3, 4) , (2, 4)} are different. But we do have a general result.

Theorem 11 Every cycle is a product of transpositions.

Proof Simply check that

(a1, a2, ..., ar) = (ar−1, ar) ◦ (ar−2, ar) ◦ ... ◦ (a2, ar) ◦ (a1, ar) .

�

Corollary 12 Every permutation can be written as a product of transposi-
tions.

Proof Every permutation can be written as a product of cycles, and every
cycle is a product of transpositions. �

Example (i) In S7 we have(
1 2 3 4 5 6 7
3 7 6 2 1 5 4

)
= (1, 3, 6, 5) ◦ (2, 7, 4)

= (6, 5) ◦ (3, 5) ◦ (1, 5) ◦ (7, 4) ◦ (2, 4) .

This decomposition is neither unique or disjoint.

(ii) In S4

(1, 2, 3, 4) = (1, 4) ◦ (1, 3) ◦ (1, 2) = (1, 4) ◦ (2, 3) ◦ (1, 3) .

(iii) In S4,

(1, 2, 3) = (1, 3) (1, 2)

= (1, 3) (4, 2) (1, 2) (1, 4)

= (1, 3) (4, 2) (1, 2) (1, 4) (2, 3) (2, 3) ,

it might not seem unreasonable that the parity of number of factor (i.e. odd
or even) is the same for all factorizations. We do not pursue this further.
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Positive powers

Definition 13 For m ∈ Z,m ≥ 1, and g ∈ G define positive powers induc-
tively by

gm = g ∗ gm−1,

with g0 = e, the identity.

Theorem 14
gm ∗ gn = gm+n and (gm)n = gmn.

Proof i) By induction on m+ n. If m+ n = 0 then m = n = 0 so the result
states 1A ∗ 1A = 1A which is true.

Assume result is true if m + n = k. Assume m + n = k + 1. If m = 0
then the result is 1A ∗ gn = g0+n which is true.

So assume m ≥ 1. Then

gm ∗ gn =
(
g ∗ gm−1

)
∗ gn by definition of gm,

= g ∗
(
gm−1 ∗ gn

)
by associativity

= g ∗ gm−1+n by inductive hypothesis

= gm+n by definition of powers.

Thus the result holds when m+n = k+1 and thus for all values of m+n,
i.e. all m,n ≥ 0.

ii) By induction on n, so here the proposition we will prove true for all n ≥ 0
is that

(gm)n = gmn for all m ≥ 0.

If n = 0 then the result states (gm)0 = g0 = 1A for all m ≥ 0, which is
true.

Assume the result is true for n = k. Assume that n = k + 1. Then

(gm)k+1 = gm ∗ (gm)k by definition of k + 1-st power

= gm ∗ gmk by inductive hypothesis

= gm+mk by part i,

= gm(k+1),

for all m ≥ 0. Thus the result holds for n = k + 1 and thus, by induction,
for all n ≥ 0. �
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Negative powers

Definition 15 For m ∈ Z, and g ∈ G define

gm =
(
g−1

)−m
,

i.e. the positive power of the inverse.

Elementary consequences of the Group axioms:

Theorem 16 Let (G, ∗) be a group.

i) For a, x, y ∈ G if x ∗ a = y ∗ a then x = y (a cancellation result),

ii) For a, x, y ∈ G if a ∗ x = a ∗ y then x = y (a cancellation result),

iii) e−1 = e, where e is the identity,

iv) For all x ∈ G, (x−1)
−1

= x,

v) For all x, y ∈ G, (x ∗ y)−1 = y−1 ∗ x−1,

vi) For x1, x2, ..., xn ∈ G,

(x1 ∗ x2 ∗ ... ∗ xn)−1 = x−1
n ∗ ... ∗ x−1

2 ∗ x−1
1 ,

vii) For m,n ∈ Z and g ∈ G, gm ∗ gn = gm+n and (gn)m = gnm.

Proof (i)

x ∗ a = y ∗ a ⇒ (x ∗ a) ∗ a−1 = (y ∗ a) ∗ a−1

⇒ x ∗
(
a ∗ a−1

)
= y ∗

(
a ∗ a−1

)
by associativity,

⇒ x ∗ e = y ∗ e definition of inverses,

⇒ x = y.

(ii)

a ∗ x = a ∗ y ⇒ a−1 ∗ (a ∗ x) = a−1 ∗ (a ∗ y)

⇒
(
a−1 ∗ a

)
∗ x =

(
a−1 ∗ a

)
∗ y by associativity,

⇒ e ∗ x = e ∗ y definition of inverses,

⇒ x = y.
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(iii)

e−1 = e−1 ∗ e since e is the identity,

= e since e−1 is the inverse of e.

(iv) By definition (x−1)
−1

is the inverse of x−1. Yet x−1 ∗ x = x ∗ x−1 = e
means that x is also the inverse of x−1. We know that the inverse of an
element is unique, hence (x−1)

−1
= x as required.

(v) By definition (x ∗ y)−1 is the inverse of x ∗ y. Yet

(x ∗ y) ∗
(
y−1 ∗ x−1

)
=

(
(x ∗ y) ∗ y−1

)
∗ x−1 by associativity,

=
(
x ∗

(
y ∗ y−1

))
∗ x−1 again by associativity,

= (x ∗ e) ∗ x−1

= x ∗ x−1 = e.

Similarly, (y−1 ∗ x−1)∗(x ∗ y) = e. So y−1 ∗x−1 is also an inverse of x∗y. We
know that the inverse of an element is unique, hence (x ∗ y)−1 = y−1 ∗x−1 as
required.

(vi) Use induction based on

(x1 ∗ x2 ∗ ... ∗ xn)−1 = ((x1 ∗ x2 ∗ ... ∗ xn−1) ∗ xn)−1

= x−1
n ∗ (x1 ∗ ... ∗ xn−1)

−1 ,

having used part (v).

(vii) Proof of gm ∗ gn = gm+n : This is done in cases.

• If m ≥ 1, n ≥ 1 the result has been seen earlier.

• If either m = 0 or n = 0, use the fact that g0 = e, the identity.

• If m ≤ −1 and n ≤ −1 write m = −r, n = −t when, by the definition
for negative powers,

gm ∗ gn =
(
g−1

)r ∗ (g−1
)s

=
(
g−1

)r+s
by the result for positive powers,

= g−(r+s) = gm+n.
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• If m ≤ −1 and n ≥ 1 then gm ∗ gn = (g−1)
r ∗ gn, with r = −m ≥ 1.

Here (g−1)
r

= g−1∗(g−1)
r−1

and gn = g∗gn−1 by the iterative definition
of a positive power. But by the index law for positive powers for g−1

we have g−1 ∗ (g−1)
r−1

= (g−1)
r−1 ∗ g−1. So we can combine as in(

g−1
)r ∗ gn =

((
g−1

)r−1 ∗ g−1
)
∗
(
g ∗ gn−1

)
by definition of r-th and n-th powers,

=
(((

g−1
)r−1 ∗ g−1

)
∗ g

)
∗ gn−1

by associativity,

=
((
g−1

)r−1 ∗
(
g−1 ∗ g

))
∗ gn−1

by associativity,

=
((
g−1

)r−1 ∗ e
)
∗ gn−1

=
(
g−1

)r−1 ∗ gn−1.

Continue, to get (g−1)
r−n

, if r ≥ n, or gn−r otherwise. In both cases
the end result is gn−r = gn+m since m = −r.

• If m ≥ 1 and n ≤ −1 then gm ∗ gn = gm ∗ (g−1)
s

with s = −n ≥ 1.
The result follows similarly.

In all cases we have gm ∗ gn = gm+n.

Proof of (gn)m = gmn : This is done in cases.

• If m ≥ 1, n ≥ 1 the result has been seen earlier.

• If either m = 0 or n = 0, both sides are equal to the identity.

• If n ≥ 1 and m ≤ −1 write m = −r. Then

(gn)m = (gn)−r =
(
(gn)−1)r by definition of negative exponent,

=
((
g−1

)n)r
, by part (vi) of this Theorem,

=
(
g−1

)nr
by this result for positive exponents,

= g−nr by definition of negative exponent,

= gnm.
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• If n ≤ −1 and m ≥ 1 write n = −s. Then

(gn)m =
(
g−s

)m
=

((
g−1

)s)m
by definition of negative exponent,

=
(
g−1

)sm
by this result for positive exponents,

= g−sm by definition of negative exponent,

= gnm.

• If n ≤ −1 and m ≤ −1 then

(gn)m =
(
g−s

)−r
=

(((
g−1

)s)−1
)r

by definition of negative exponent,

=
((

(gs)−1)−1
)r

by part (vi) of this Theorem,

= (gs)r by part (iv) of this Theorem,

= gsr by this result for positive exponents,

= gmn since mn = rs.

Hence in all cases (gn)m = gmn. �
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Rings

Definition 17 A ring is a non-empty set R along with two binary opera-
tions on R, addition + and multiplication ×, such that

1. (R,+) is an abelian group,

2. R is closed under multiplication,

3. multiplication is associative on R,

4. For all a, b and c ∈ R we have

a× (b+ c) = a× b+ a× c

(b+ c)× a = b× a+ c× a.

These are called the Distributive laws, we are “distributing” the a through-
out the terms of the bracket. These laws are important in that they combine
both operations, + and −.

Note that we don’t demand that (R,×) is a group. Non-zero elements in R
may fail to have inverses. Even more basic, there may not be a multiplicative
identity! And we also don’t demand that multiplication is commutative.

Example 18 of rings:

i) (Z,+,×) is the first example of a ring. From that we can go to a finite
ring (Zm,+,×) .

ii) The set of n × n matrices with real coefficients, (Mn (R) ,+,×) , is a
ring. We have a multiplicative identity, the identity matrix, but not
every matrix has an inverse. Also this ring is non-commutative.

The interest in rings lies in how the two operations interact with each
other. We saw before, in the section on primes, that if we ask additive
questions about multiplicative objects, primes, we get questions, such as
Goldbach’s Conjecture, that have withstood attack for hundreds of years.

In the case of a general ring we have the additive identity 0. What
would we expect of the multiplication 0× a for a ∈ R? Unsurprisingly

17
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Lemma 19 For all a ∈ R we have 0× a = 0.

Proof Let a ∈ R be given. Since 0 is the additive identity, we have 0+0 = 0.
Then

(0 + 0)× a = 0× a

0× a+ 0× a = 0× a, by distributive law,

0× a = 0, on adding − (0× a) to both sides.

Since the distributive law is the only axiom to contain both operations,
+ and × it is no surprise we have to use it in the proof above. �

Again, −1 is the additive inverse of 1 as is −a for any element of R. But
are −a and −1× a the same? Unsurprisingly we have

Lemma 20 For all a ∈ R we have −1× a = −a.

Proof Let a ∈ R be given. Start from 1 + (−1) = 0. Then

(1 + (−1))× a = 0× a = 0 by result above,

1× a+ (−1)× a = 0 by distributive law,

a+ (−1)× a = 0 since 1 is the multiplicative identity,

−a+ (a+ (−1)× a) = −a+ 0 adding − a to both side,

(−a+ a) + (−1)× a = −a, by associativity on LHS and 0 identity on RHS,

0 + (−1)× a = −a,
(−1)× a = −a,

What we can see here is that because we have only a few axioms defining
a ring, the proof of something quite familiar, is surprisingly long. We increase
the number of axioms in the next section.

18
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Fields

Definition 21 A field (F,+,×) , is a non-empty set F along with two bi-
nary operations on F , addition + and multiplication ×, such that satisfies

i) (F,+,×) is a ring,

ii) multiplication is commutative on F ,

iii) There is a multiplicative identity in F,

iv) Every non-zero element of F has a multiplicative inverse.

The interest in fields comes from the fact that many of a our familiar
arithmetic structures are fields.

Example 22 of fields:

i) (R,+,×) , (C,+,×) and (Q,+,×) are infinite fields,

ii) (Zp,+p,×p) for p a prime, is an example of a finite field.

But note that (Zm,+m,×m) is not a field if m not prime.

Something for future years : (R,+,×) , (C,+,×) and (Q,+,×) satisfy the
axioms of a field and so, to this extent, are the same. But what further
properties do they satisfy that show they are different?

On (R,+,×) and (Q,+,×) we can define an order relation a < b with
properties such that if a < b then a + c < b + c and if a < b and b < c then
a < c. It can be shown that no such relation exists on (C,+,×). Hence
(C,+,×) is different to both (R,+,×) and (Q,+,×).

But are (R,+,×) and (Q,+,×) different? From the first half of the course
you know they are different, R is uncountable while Q is countable. But here
I want to mention another difference. Consider the sequence of rational
numbers 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, .... , which gets arbitrarily close
(converges to) the limit

√
2. Unfortunately,

√
2 /∈ Q. So, in (Q,+,×) it is

not true that all convergent sequences converge. But it can be shown that in
(R,+,×) all convergent sequences converge. These ideas take us away from
algebra and into areas of analysis.
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More examples of binary operations and groups.

Example 23 of binary operations not seen in course:

• S = Mn (R), the set of n× n matrices with real entries, with a binary
operation of either matrix addition or matrix multiplication.

• Let X be any non-empty set, S = P (X) , the power set of X, with a
binary operation of either ∩ or ∪.

• Let Ω be a non-empty set and S the set of all functions Ω → Ω along
with ◦, composition of functions.

Example 24 Not a binary operation:

• If S = N then subtraction − is not a binary operation since 1− 2 /∈ N.

• If S = Q then a ∗ b = a/b is not a binary operation since 1 ∗ 0 has no
meaning.

Example of binary operations not seen in course: Want to take the time to
define sets of polynomials.

Definition 25 For a set F , a polynomial over F with variable x is of
the form

anx
n + an−1x

n−1 + an−2x
n−2 + ...+ a1x+ a0,

where an, an−1, ..., a1, a0 ∈ F .

The ai, 0 ≤ i ≤ n are the coefficients of the polynomial.

If xn is the largest power of x appearing in the polynomial then n is the
degree of the polynomial, anx

n is the leading term and an is the leading
coefficient.

The collection of all polynomials with one variable x and with coefficients
from F will be denoted by F [x] . (Note the square brackets.)

Note that 0 ∈ F [x], being ... + 0x2 + 0x + 0, but it is not said to have a
degree, though some books give it degree −1 or even −∞.

Example 26

3x2 + 5x− 1 ∈ Z [x] ,

x2 − π ∈ R [x] ,

3
7
x3 − 5

12
x2 + x ∈ Q [x] ,

5x4 + x+ 2 ∈ Z7 [x] .
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If we can add and multiply numbers in the set F then we can add and
multiply the polynomials in F [x].

Example 27 i) In Z [x] the sum of 3x2 + 5x− 1 and 5x3 − 3x2 + 2x+ 1
is (

3x2 + 5x− 1
)

+
(
5x3 − 3x2 + 2x+ 1

)
= 5x3 + 7x.

ii) Addition in Z3 [x]. The sum of 2x3 + 2x2 + x+ 1 and x3 + 2x2 + 2 is

2x3 + 2x2 + x+ 1

+
(
x3 + 2x2 + 2

)
= x2 + x,

iii) In Z [x] the product of x2 + 2x+ 3 and x2 + 4 is(
x2 + 2x+ 3

) (
x2 + 4

)
= 3x2 + 12

+ 2x3 + 8x

+x4 + 4x2

= x4 + 2x3 + 7x2 + 8x+ 12

iv) Multiplication in Z2 [x] . The product of x3 + x+ 1 and x2 + x+ 1 is(
x3 + x+ 1

) (
x2 + x+ 1

)
= x5 + x4 + x3

+ x3 + x2 + x

+ x2 + x+ 1

= x5 + x4 + 1.

using 2 ≡ 0 mod 2. Thus + and × are binary operations on Z [x] and
Zm [x].

Aside The results of Chapters 1-3, on arithmetic, congruencies
and congruence classes can be given for either Z [x], Zm [x] in
place of Z. This is because we can talk of one polynomial dividing
another.

Definition 28 If f, g ∈ F [x], we say that g divides f if there exists h ∈
F [x] such that f = gh.
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Example 29 In Z [x] , x− 1 divides x3 − 2x2 + 1 since

x3 − 2x2 + 1 = (x− 1)
(
x2 − x− 1

)
.

In Z2 [x] , x+ 1 divides x3 + 1 since

x3 + 1 = (x+ 1)
(
x2 + x+ 1

)
.

We could then talk of greatest common divisors (greatest in terms
of degree) and linear combinations. Or we could talk about con-
gruencies, saying f (x) ≡ g (x) modh (x) iff h (x) divides f (x) −
g (x) and congruence classes. We could then construct new “alge-
braic structures” by defining addition and multiplication on these
congruence classes of polynomials. This is something for future
years.

End of aside

Example 30 of identity. In (P (X) ,∩) the identity is X since X ∩ C =
C ∩X = C for all C ∈ P (X) .

Question Do we always have identities?

Example 31 Let 2Z be the set of even integers. The product of two even
integers is even so × is a binary operation on 2Z. Yet there is no identity in
(2Z,×) because 1 is not even.

In (Z,−) we have a right identity, n− 0 = n, but no left identity (the left
identity won’t be 0 since 0− n = −n 6= n when n 6= 0 and no other possible
value for the left identity will work).

Question Do we always have inverses?

Example 32 In (M2 (R) ,×) not every non-zero matrix here has an inverse,
for example (

1 1
1 1

)
.

Example 33 of semigroups. (X is a non-empty set)

(Z,×) , (Zn,+) , (Zn,×) , (N,+) , (2Z,×) , (P (X) ,∩) , (P (X) ,∪) ,

(Sn, ◦) , (Z [x] ,+) , (Z [x] ,×) , (Zn [x] ,+) and (Zn [x] ,×) .
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Definition 34 An important subset of (M2 (R) ,×) is the collection of ma-
trices that have an inverse, i.e. are invertible. Such matrices have a non-zero
determinant.

GL2 (R) =

{(
a b
c d

)
: ad− bc 6= 0

}
.

Here GL stands for General Linear. So again we have “thrown away”
the elements with no inverse.

Example 35 In (M2 (R) ,×) let

a =

(
1 1
0 1

)
, b =

(
1 0
1 1

)
.

Then

(ab)2 =

(
2 1
1 1

)2

=

(
5 3
3 2

)
.

But

a2b2 =

(
1 2
0 1

)(
1 0
2 1

)
=

(
5 2
2 1

)
.

So we don’t necessarily have a2 ∗ b2 = (a ∗ b)2 .

Example 36 (Z,+) is an additive group.

Verification

G1 If m,n ∈ Z then m+ n ∈ Z,

G2 If m,n, p ∈ Z then (m+ n) + p = m+ (n+ p),

G3 We have 0 ∈ Z and for all n ∈ Z, n+ 0 = 0 + n = n,

G4 For any n ∈ Z we have −n ∈ Z and n+ (−n) = (−n) + n = 0.

Thus (Z,+) is an additive group with identity 0 and the inverse of n is
−n. �

Example 37 (Zm,+m) is an additive group.

Verification We know (Zm,+) is a semigroup. So only need note that [0]m
is the identity and, for [a]m ∈ Zm, the inverse is [−a]m = [m− a]m .

�
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Example 38 (Mn (R) ,+) (Z [x] ,+) and (Zm [x] ,+) are further examples
of additive groups. In such groups the identity is normally denoted by 0.

Example 39 ({i,−1,−i, 1} ,×), where i2 = −1, is a multiplicative group.

Verification From the table

× 1 i −i −1

1 1 i −i −1

i i −1 1 −i
−i −i 1 −1 i

−1 −1 −i i 1

we see that G1, G3 (with e = 1) and G4 (with 1−1 = 1, i−1 = −i, (−1)−1 =
−1 and (−i)−1 = i) are all satisfied. G2 holds since multiplication of complex
numbers is associative. �

Example 40 Other multiplicative groups are (C \ {0} ,×) , (Q \ {0} ,×) ,
and

(
Z∗
p,×p

)
.

Question for students. Why are (Mn (R) ,×) (Z [x] ,×) and (Zm [x] ,×) not
multiplicative groups?

Note In the theory of groups a general group is normally written with a
multiplicative operation.

In multiplicative groups the identity is normally denoted by 1, id or I.
Note that I say “normally”.

Example 41 ({2, 4, 6, 8} ,×10) .

×10 2 4 6 8

2 4 8 2 6

4 8 6 4 2

6 2 4 6 8

8 6 2 8 4

From the table we see that the identity is 6. Also 2−1 = 8, 4−1 = 4, 6−1 = 6
and 8−1 = 2.
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